In this research, we collect monthly content consumption and demographic data from YouTube over two years for a large media publisher.
We use automation to generate 15 personas each month. Then, we examine the consistency of the generated personas over time. We find that there are 35 unique personas in total for the entire period. The change in personas reflect the changes in the underlying audience population.
For each persona, we generate topics of interest. We then identify the top three monthly topics for each of the 35 personas following an identical algorithmic approach each month. For this, we use the APG system.
We then compare the sets of topical interests of the personas month-over-month for the entire two-year period. Findings show that there is an average 20.2% change in topical interests. Findings also show that 68% of the personas experience more topical change than topical consistency.
Results suggest that the topical interests of online audiences are fluid. These changes in the underlying audience data can occur within a relatively short period, resulting in the need for constant updating of personas using data-driven methods.
The implications for organizations seeking to understand their online audience are that they should employ routine data analysis to detect changes in the audience interests and investigate ways to automate their persona generation processes.
Read full research
Jansen, B. J., Jung, S.G., and Salminen, J. (2019) Capturing the Change in Topical Interests of Personas Over Time. Association for Information Science and Technology Annual Meeting 2019 (ASIST2019). Melbourne, Australia. 19-23 Oct. 127-136.
Read more persona research
All published work from us: https://persona.qcri.org/persona-research
Read more about data-driven personas
Pingback: 9 Things Clients Get Wrong About Personas – The Persona Blog